Deep Learning for Unsupervised Insider Threat Detection in Structured Cybersecurity Data Streams

نویسندگان

  • Aaron Tuor
  • Samuel Kaplan
  • Brian Hutchinson
  • Nicole Nichols
  • Sean Robinson
چکیده

Analysis of an organization’s computer network activity is a key component of early detection and mitigation of insider threat, a growing concern for many organizations. Raw system logs are a prototypical example of streaming data that can quickly scale beyond the cognitive power of a human analyst. As a prospective filter for the human analyst, we present an online unsupervised deep learning approach to detect anomalous network activity from system logs in real time. Our models decompose anomaly scores into the contributions of individual user behavior features for increased interpretability to aid analysts reviewing potential cases of insider threat. Using the CERT Insider Threat Dataset v6.2 and threat detection recall as our performance metric, our novel deep and recurrent neural network models outperform Principal Component Analysis, Support Vector Machine and Isolation Forest based anomaly detection baselines. For our best model, the events labeled as insider threat activity in our dataset had an average anomaly score in the 95.53 percentile, demonstrating our approach’s potential to greatly reduce analyst workloads.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Evolving Insider Threat Detection Stream Mining Perspective

Evidence of malicious insider activity is often buried within large data streams, such as system logs accumulated over months or years. Ensemble-based stream mining leverages multiple classification models to achieve highly accurate anomaly detection in such streams, even when the stream is unbounded, evolving, and unlabeled. This makes the approach effective for identifying insider threats who...

متن کامل

Supervised and Unsupervised methods to detect Insider Threat from Enterprise Social and Online Activity Data

Insider threat is a significant security risk for organizations, and detection of insider threat is of paramount concern to organizations. In this paper, we attempt to discover insider threat by analyzing enterprise social and online activity data of employees. To this end, we process and extract relevant features that are possibly indicative of insider threat behavior. This includes features e...

متن کامل

Outlier Detection in Random Subspaces over Data Streams: An Approach for Insider Threat Detection

Insider threat detection is an emergent concern for industries and governments due to the growing number of attacks in recent years. Several Machine Learning (ML) approaches have been developed to detect insider threats, however, they still suffer from a high number of false alarms. None of those approaches addressed the insider threat problem from the perspective of stream mining data where a ...

متن کامل

Insider Threat Detection in PRODIGAL

This paper reports on insider threat detection research, during which a prototype system (PRODIGAL) was developed and operated as a testbed for exploring a range of detection and analysis methods. The data and test environment, system components, and the core method of unsupervised detection of insider threat leads are presented to document this work and benefit others working in the insider th...

متن کامل

Fast Unsupervised Automobile Insurance Fraud Detection Based on Spectral Ranking of Anomalies

Collecting insurance fraud samples is costly and if performed manually is very time consuming. This issue suggests usage of unsupervised models. One of the accurate methods in this regards is Spectral Ranking of Anomalies (SRA) that is shown to work better than other methods for auto insurance fraud detection specifically. However, this approach is not scalable to large samples and is not appro...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • CoRR

دوره abs/1710.00811  شماره 

صفحات  -

تاریخ انتشار 2016